Support Vector Machine Classifiers with Uncertain Knowledge Sets via Robust Optimization
نویسندگان
چکیده
In this paper we study Support Vector Machine(SVM) classifiers in the face of uncertain knowledge sets and show how data uncertainty in knowledge sets can be treated in SVM classification by employing robust optimization. We present knowledge-based SVM classifiers with uncertain knowledge sets using convex quadratic optimization duality. We show that the knowledge-based SVM, where prior knowledge is in the form of uncertain linear constraints, results in an uncertain convex optimization problem with a set containment constraint. Using a new extension of Farkas’ lemma, we reformulate the robust counterpart of the uncertain convex optimization problem in the case of interval uncertainty as a convex quadratic optimization problem. We then reformulate the resulting convex optimization problems as a simple quadratic optimization problem with non-negativity constraints using the Lagrange duality. We obtain the solution of the converted problem by a fixed point iterative algorithm and establish the convergence of the algorithm. We finally present some preliminary results of our computational experiments of the method.
منابع مشابه
Optimization : A Journal of Mathematical Programming and Operations Research
In this article we study support vector machine (SVM) classifiers in the face of uncertain knowledge sets and show how data uncertainty in knowledge sets can be treated in SVM classification by employing robust optimization. We present knowledge-based SVM classifiers with uncertain knowledge sets using convex quadratic optimization duality. We show that the knowledge-based SVM, where prior know...
متن کاملThe Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations
The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملRobust multiclass kernel-based classifiers
In this research, a robust optimization approach applied to multiclass support vector machines (SVMs) is investigated. Two new kernel based-methods are developed to address data with input uncertainty where each data point is inside a sphere of uncertainty. The models are called robust SVM and robust feasibility approach model (Robust-FA) respectively. The two models are compared in terms of ro...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کامل